login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146753 a(n)=denominator of k_n such that Integrate[(1+x^(3n))/Sqrt[1-x^3],{x,0,1}]= k_n*(Gamma[1/3]^3)/(2^(1/3)Sqrt[3]Pi) where n=0,1,2,... 2
1, 10, 110, 1870, 8602, 249458, 1247290, 51138890, 218502530, 2316126818, 136651482262, 136651482262, 570720896506, 6277929861566, 521068178509978, 46375067887388042, 2016307299451654, 203647037244617054 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

General formula (*Artur Jasinski*):

Integrate[(1+x^(3n))/Sqrt[1-x^3],{x,0,1}] = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma[1/3]^3)/(2^(1/3)Sqrt[3]Pi).

For constant G_3 see A118292.

For numerators of k_n see A146752.

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n)=Denominator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}]

MATHEMATICA

Table[Denominator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}])], {n, 0, 30}] (*Artur Jasinski*)

CROSSREFS

Cf. A146752, A118292.

Sequence in context: A108487 A099883 A337351 * A297500 A305213 A181929

Adjacent sequences:  A146750 A146751 A146752 * A146754 A146755 A146756

KEYWORD

nonn,frac

AUTHOR

Artur Jasinski, Nov 01 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 02:55 EDT 2022. Contains 356180 sequences. (Running on oeis4.)