|
|
A146753
|
|
a(n)=denominator of k_n such that Integrate[(1+x^(3n))/Sqrt[1-x^3],{x,0,1}]= k_n*(Gamma[1/3]^3)/(2^(1/3)Sqrt[3]Pi) where n=0,1,2,...
|
|
2
|
|
|
1, 10, 110, 1870, 8602, 249458, 1247290, 51138890, 218502530, 2316126818, 136651482262, 136651482262, 570720896506, 6277929861566, 521068178509978, 46375067887388042, 2016307299451654, 203647037244617054
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
General formula (*Artur Jasinski*):
Integrate[(1+x^(3n))/Sqrt[1-x^3],{x,0,1}] = G_3 * k_n = G_3*A146751(n)/A146752(n) = A118292*A146751(n)/A146752(n) where G_3 = (Gamma[1/3]^3)/(2^(1/3)Sqrt[3]Pi).
For constant G_3 see A118292.
For numerators of k_n see A146752.
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
a(n)=Denominator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}]
|
|
MATHEMATICA
|
Table[Denominator[(1/2) (1 + Product[(2 (1 + 3 k))/(5 + 6 k), {k, 0, n - 1}])], {n, 0, 30}] (*Artur Jasinski*)
|
|
CROSSREFS
|
Cf. A146752, A118292.
Sequence in context: A108487 A099883 A337351 * A297500 A305213 A181929
Adjacent sequences: A146750 A146751 A146752 * A146754 A146755 A146756
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Artur Jasinski, Nov 01 2008
|
|
STATUS
|
approved
|
|
|
|