login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A341629
Characteristic function of A055932: a(n) = 1 if n is a number all of whose prime divisors are consecutive primes starting at 2, otherwise 0.
3
1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) >= A322585(n) for all n.
MATHEMATICA
Array[Boole[MemberQ[{{0}, {1}}, Union@Prepend[Differences[#], First[#]] &@ PrimePi@ FactorInteger[#][[All, 1]] ] ] &, 120] (* Michael De Vlieger, Feb 25 2021 *)
PROG
(PARI) A341629(n) = if(1==n, 1, my(f=factor(n)[, 1]~); (primepi(f[#f])==#f));
CROSSREFS
Cf. A055932 (positions of ones), A080259 (of zeros), A322585, A340346.
Sequence in context: A344438 A322585 A326956 * A365429 A322860 A378550
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 25 2021
STATUS
approved