The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001015 Seventh powers: a(n) = n^7. (Formerly M5392 N2341) 80
 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171, 35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032, 893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424, 6103515625, 8031810176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS For n>0, (a(3*n-1)^7-a(2*n-1)^7-a(n)^7)/(7*(3*n-1)*(2*n-1)*n) = (2*A001106(n)+1)^2 (see Barisien reference, problem 173). - Bruno Berselli, Feb 01 2011 Number of the form a(n) + a(n+1) + ... + a(n+k) is never prime for all n, k>=0. This could be proved by the method indicated in the comment in A256581. - Vladimir Shevelev and Peter J. C. Moses, Apr 04 2015 REFERENCES E.-N. Barisien, Supplemento al Periodico di Matematica, Raffaello Giusti Editore (Livorno), July 1913, p. 135 (Problem 173). N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1). FORMULA Multiplicative with a(p^e) = p^(7e). - David W. Wilson, Aug 01 2001 Totally multiplicative sequence with a(p) = p^7 for primes p. - Jaroslav Krizek, Nov 01 2009 a(n) = 7*a(n-1) - 21* a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + 5040. - Ant King, Sep 24 2013 a(n) = n + Sum_{j=0..n-1}{k=1..6}binomial(7,k)*j^(7-k). - Patrick J. McNab, Mar 28 2016 G.f.: x*(1+120*x+1191*x^2+2416*x^3+1191*x^4+120*x^5+x^6)/(1-x)^8. See the Maple program. - Wolfdieter Lang, Oct 14 2016 From Kolosov Petro, Oct 22 2018: (Start) a(n) = Sum_{k=1..n} A300785(n,k). a(n) = Sum_{k=0..n-1} A300785(n,k). (End) From Amiram Eldar, Oct 08 2020: (Start) Sum_{n>=1} 1/a(n) = zeta(7) (A013665). Sum_{n>=1} (-1)^(n+1)/a(n) = 63*zeta(7)/64 (A275710). (End) MAPLE A001015:=z*(1191*z^4+120*z^5+1191*z^2+2416*z^3+120*z+z^6+1)/(z-1)^8; # Simon Plouffe in his 1992 dissertation; offset corrected by M. F. Hasler, Feb 01 2011 MATHEMATICA Table[n^7, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *) PROG (Maxima) makelist(n^7, n, 0, 20); /* Martin Ettl, Jan 15 2013 */ (PARI) a(n)=n^7 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000584, A013665, A275710, A300785. Sequence in context: A250365 A017678 A123253 * A352053 A050754 A351605 Adjacent sequences:  A001012 A001013 A001014 * A001016 A001017 A001018 KEYWORD nonn,easy,mult AUTHOR EXTENSIONS More terms from James A. Sellers, Sep 19 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 14:02 EDT 2022. Contains 355007 sequences. (Running on oeis4.)