|
|
A092993
|
|
Smallest prime of the form concatenation(s) of prime(n) with itself followed by a 3, or 0 if no such prime exists.
|
|
4
|
|
|
23, 0, 53, 73, 113, 13131313133, 173, 193, 233, 293, 313, 373, 41413, 433, 47474747474747474747474747473, 53535353535353535353535353533, 593, 613, 673, 71713, 733, 0, 83833, 89898989893, 97973, 1013, 1033, 1071071071073, 1093
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Start with p=prime(n). If concat(p,3) is prime, then this is a(n), else consider concat(p,p,3), and so on.
|
|
LINKS
|
Table of n, a(n) for n=1..29.
|
|
EXAMPLE
|
For a(1), start with prime(1)=2. Since appending a digit 3 yields the prime 23, a(1)=23.
For a(2), start with prime(2)=3. Since concatenating any number of digits '3' never yields a prime, a(2)=0.
For a(6), starting with prime(6)=13, one has to take 5 concatenations of itself before a prime is obtained when a final digit '3' is appended, thus a(6)=13131313133.
a(22)=0 since the concatenation of prime(22)=79 with itself, followed by a 3, is always composite. - Giovanni Resta, Apr 07 2006
|
|
CROSSREFS
|
Cf. A092992, A092994, A092995.
Sequence in context: A180729 A119566 A143196 * A238331 A114784 A141517
Adjacent sequences: A092990 A092991 A092992 * A092994 A092995 A092996
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
Amarnath Murthy, Mar 28 2004
|
|
EXTENSIONS
|
a(15)-a(21) from Stefan Steinerberger, Nov 09 2005
More terms from Giovanni Resta, Apr 07 2006
|
|
STATUS
|
approved
|
|
|
|