|
|
A274259
|
|
Number of factor-free Dyck words with slope 7/3 and length 10n.
|
|
5
|
|
|
1, 12, 570, 44689, 4223479, 441010458, 49014411306, 5685822210429, 680500195656621, 83406972284096638, 10416465145620729162, 1320749077779826216029, 169570747575202480367168, 22000830732097549119672094, 2880094468241888675318895339, 379941591968957300338548388051, 50458777676743899501139029335858
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,7n) that stay below the line y=7/3x and also do not contain a proper sub-path of smaller size.
|
|
LINKS
|
|
|
FORMULA
|
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(10*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/10) = 1 + 12*x + 570*x^2 + 44689*x^3 + .... Equivalently, [x^n]( A(x)^(10*n) ) = binomial(10*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 03 2020
|
|
EXAMPLE
|
a(2) = 570 since there are 570 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,14) that stay below the line y=7/3x and also do not contain a proper sub-path of small size; e.g., ENNENENNNENNENNNENNN is a factor-free Dyck word but ENNENNENNEENNNNNENNN contains the factor ENNEENNNNN.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|