|
|
A274244
|
|
Number of factor-free Dyck words with slope 7/2 and length 9n.
|
|
7
|
|
|
1, 4, 34, 494, 8615, 165550, 3380923, 71999763, 1580990725, 35537491360, 813691565184, 18911247654404, 444978958424224, 10579389908116344, 253756528273411250, 6133110915783398175, 149219383150626519874, 3651756292682801022384, 89830021324956206790496, 2219945238901447637080235, 55088272581138888326634644
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (2n,7n) that stay below the line y=7/2x and also do not contain a proper sub-path of smaller size.
|
|
LINKS
|
|
|
FORMULA
|
Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(9*n, 2*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/9) = 1 + 4*x + 34*x^2 + 494*x^3 + .... Equivalently, [x^n]( A(x)^(9*n) ) = binomial(9*n, 2*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020
|
|
EXAMPLE
|
a(2) = 34 since there are 34 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (4,14) that stay below the line y=7/2x and also do not contain a proper sub-path of small size; e.g., EEENNNNENNNNNNNNNN is a factor-free Dyck word but EEENNENNNNNNNNNNNN contains the factor ENNENNNNN.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|