The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274257 Number of factor-free Dyck words with slope 4/3 and length 7n. 5
 1, 5, 52, 880, 17856, 399296, 9491008, 235274240, 6014201600, 157387037696, 4195621863424, 113534211297280, 3110485641494528, 86107512380129280, 2404899661362184192, 67680890349732102144, 1917436905101367443456, 54640222663002565640192, 1565130555077611323392000, 45039415225401829826232320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) is the number of lattice paths (allowing only north and east steps) starting at (0,0) and ending at (3n,4n) that stay below the line y=4/3x and also do not contain a proper sub-path of smaller size. LINKS Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, arXiv:1606.02183 [math.CO], 2016. Daniel Birmajer, Juan B. Gil and Michael D. Weiner, On rational Dyck paths and the enumeration of factor-free Dyck words, Discrete Applied Mathematics, 244 (2018), 36-43. P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics, 225 (2000), 121-135. FORMULA G.f. satisfies: 0 = x*f^6 + x*(x-1)*f^5 - x^2*(x+1)*f^4 - x*(x-3)*(x+1)^2*f^3 + x*(x+1)^3*f^2 - (x+1)^4*f + (x+1)^5. - Michael D. Weiner, Jan 14 2019 Conjectural o.g.f.: Let E(x) = exp( Sum_{n >= 1} binomial(7*n, 3*n)*x^n/n ). Then A(x) = ( x/series reversion of x*E(x) )^(1/7) = 1 + 5*x + 52*x^2 + 880*x^3 + .... Equivalently, [x^n]( A(x)^(7*n) ) = binomial(7*n, 3*n) for n = 0,1,2,.... - Peter Bala, Jan 01 2020 EXAMPLE a(2) = 52 since there are 52 lattice paths (allowing only north and east steps) starting at (0,0) and ending at (6,8) that stay below the line y=4/3x and also do not contain a proper sub-path of small size; e.g., EENEENENNENNNN is a factor-free Dyck word but ENEEENNENNENNN contains the factor EENNENN. MATHEMATICA m = 20; f[_] = 0; Do[f[x_] = (1/(x+1)^4)(-(x^2 (x+1) f[x]^4) + x f[x]^6 + (x-1) x f[x]^5 - (x - 3) x (x+1)^2 f[x]^3 + x (x+1)^3 f[x]^2 + (x+1)^5) + O[x]^m, {m}]; CoefficientList[f[x], x] (* Jean-François Alcover, Sep 28 2019 *) CROSSREFS Cf. A005807 (slope 3/2), A274052 (slope 5/2), A274244 (slope 7/2), A274256 (slope 9/2), A274258 (slope 5/3), A274259 (slope 7/3). Sequence in context: A210096 A076281 A099977 * A336609 A303000 A278879 Adjacent sequences: A274254 A274255 A274256 * A274258 A274259 A274260 KEYWORD nonn AUTHOR Michael D. Weiner, Jun 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 17:06 EDT 2023. Contains 361528 sequences. (Running on oeis4.)