login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133415
a(n) = (1/10)*(2^(4*n-1)-5^n*L(2*n)+L(4*n)), where L() = Lucas numbers A000032.
0
0, 0, 12, 560, 15504, 346104, 6906900, 129024512, 2310796740, 40226003064, 686392118544, 11543525003120, 192052217662812, 3169185696976320, 51968632068982524, 848016349271816384, 13784507849163060240, 223382961205435729512, 3611184426083530971300, 58264040214444951056384
OFFSET
1,3
LINKS
H.-J. Seiffert, Problem H-651, Fib. Quart., 45 (2007), 91.
FORMULA
a(n) = Sum_{k = 0..floor((n-3)/5)} binomial(4n, 2n-10k-5).
O.g.f.: -4*x^3*(3+26*x+5*x^2)/((-1+16*x)*(1-15*x+25*x^2)*(1-7*x+x^2)) = -(1/20)+(1/10)*(-2+15*x)/(1-15*x+25*x^2)-(1/20)/(-1+16*x)+(1/10)*(2-7*x)/(1-7*x+x^2) . - R. J. Mathar, Nov 28 2007
PROG
(PARI) a(n) = sum(k=0, (n-3)\5, binomial(4*n, 2*n-10*k-5)); \\ Michel Marcus, Sep 06 2017
CROSSREFS
Sequence in context: A193381 A224539 A210816 * A192602 A227143 A274259
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2007
STATUS
approved