The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067595 Number of partitions of n into distinct Lucas parts (A000032). 27
 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 4, 4, 6, 5, 5, 5, 6, 4, 4, 4, 5, 4, 4, 7, 6, 6, 6, 8, 5, 5, 7, 6, 6, 6, 8, 6, 6, 6, 7, 5, 5, 8, 6, 6, 6, 7, 4, 4, 5, 5, 5, 5, 8, 7, 7, 7, 9, 6, 6, 9, 8, 8, 8, 10, 7, 7, 7, 8, 6, 6, 10, 8, 8, 8, 10, 6, 6, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..15127 FORMULA G.f.: B(x) * (1 + x^2) where B(x) is the g.f. of A003263. [Joerg Arndt, Jul 14 2013] MATHEMATICA n1 = 10; n2 = LucasL[n1]; (1 + x^2)*Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *) PROG (PARI) L(n) = fibonacci(n+1) + fibonacci(n-1); N = 66;  x = 'x + O('x^N); gf = prod(n=0, 11, 1 + x^L(n) ); \\gf = prod(n=1, 11, 1 + x^L(n) ) * (1+x^2); \\ same g.f. Vec(gf) \\ Joerg Arndt, Jul 14 2013 CROSSREFS Cf. A000032, A000119. Sequence in context: A127992 A327390 A169989 * A184721 A134868 A322861 Adjacent sequences:  A067592 A067593 A067594 * A067596 A067597 A067598 KEYWORD easy,nonn,look AUTHOR Naohiro Nomoto, Jan 31 2002 EXTENSIONS Corrected a(0), Joerg Arndt, Jul 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 21:56 EDT 2022. Contains 354092 sequences. (Running on oeis4.)