login
A067595
Number of partitions of n into distinct Lucas parts (A000032).
29
1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 5, 4, 4, 4, 5, 3, 3, 4, 4, 4, 4, 6, 5, 5, 5, 6, 4, 4, 6, 5, 5, 5, 6, 4, 4, 4, 5, 4, 4, 7, 6, 6, 6, 8, 5, 5, 7, 6, 6, 6, 8, 6, 6, 6, 7, 5, 5, 8, 6, 6, 6, 7, 4, 4, 5, 5, 5, 5, 8, 7, 7, 7, 9, 6, 6, 9, 8, 8, 8, 10, 7, 7, 7, 8, 6, 6, 10, 8, 8, 8, 10, 6, 6, 8
OFFSET
0,4
LINKS
FORMULA
G.f.: B(x) * (1 + x^2) where B(x) is the g.f. of A003263. [Joerg Arndt, Jul 14 2013]
MATHEMATICA
n1 = 10; n2 = LucasL[n1]; (1 + x^2)*Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *)
PROG
(PARI)
L(n) = fibonacci(n+1) + fibonacci(n-1);
N = 66; x = 'x + O('x^N);
gf = prod(n=0, 11, 1 + x^L(n) );
\\gf = prod(n=1, 11, 1 + x^L(n) ) * (1+x^2); \\ same g.f.
Vec(gf) \\ Joerg Arndt, Jul 14 2013
CROSSREFS
Sequence in context: A127992 A327390 A169989 * A184721 A369705 A134868
KEYWORD
easy,nonn,look
AUTHOR
Naohiro Nomoto, Jan 31 2002
EXTENSIONS
Corrected a(0), Joerg Arndt, Jul 14 2013
STATUS
approved