login
A327390
Number of connected divisors of n.
0
1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 3, 2, 2, 4, 2, 3, 4, 3, 2, 3, 3, 3, 4, 3, 2, 4, 2, 2, 3, 3, 3, 4, 2, 3, 4, 3, 2, 5, 2, 3, 4, 3, 2, 3, 3, 4, 3, 3, 2, 5, 3, 3, 4, 3, 2, 4, 2, 3, 6, 2, 4, 4, 2, 3, 3, 4, 2, 4, 2, 3, 4, 3, 3, 5, 2, 3, 5, 3, 2, 5, 3, 3, 4
OFFSET
1,2
COMMENTS
A number n with prime factorization n = prime(m_1)^s_1 * ... * prime(m_k)^s_k is connected if the simple labeled graph with vertex set {m_1,...,m_k} and edges between any two vertices with a common divisor greater than 1 is connected. Connected numbers are listed in A305078. The maximum connected divisor of n is A327076(n).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[Divisors[n], Length[zsm[primeMS[#]]]<=1&]], {n, 100}]
CROSSREFS
See link for additional cross-references.
Sequence in context: A259578 A266547 A127992 * A169989 A067595 A184721
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 15 2019
STATUS
approved