login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302923
Raw half-moments of a Fibonacci-geometric probability distribution.
6
3, 29, 411, 7757, 183003, 5180909, 171119931, 6459325517, 274300290843, 12942639522989, 671756887456251, 38035572830424077, 2333081451314129883, 154118411443366428269, 10907930704590567517371, 823491157770358707135437, 66054810199299268861908123
OFFSET
1,1
COMMENTS
If F(k) is the k-th Fibonacci number, where F(0)=0, F(1)=1, and F(n)=F(n-1)+F(n-2), then p(k)=F(k-1)/2^k is a normalized probability distribution on the positive integers.
For example, it is the probability that k coin tosses are required to get two heads in a row, or the probability that a random series of k bits has its first two consecutive 1's at the end.
The g.f. for this distribution is g(x) = x^2/(4-2x-x^2) = (1/4)x^2 + (1/8)x^3 + (1/8)x^4 + (3/32)x^5 + ....
The n-th moments about zero of this distribution, known as raw moments, are defined by a(n) = Sum_{k>=1} (k^n)*p(k). They appear to be integers and form A302922.
The e.g.f. for the raw moments is g(e^x) = 1 + 6x + 58x^2/2! + 822x^3/3! + ....
For n >= 1, the raw moments appear to be even. Dividing them by 2 gives this sequence of raw half-moments.
The central moments (i.e., the moments about the mean) also appear to be integers. They form sequence A302924.
The central moments also appear to be even for n >= 1. Dividing them by 2 gives sequence A302925.
The cumulants of this distribution, defined by the cumulant e.g.f. log(g(e^x)), also appear to be integers. They form sequence A302926.
The cumulants also appear to be even for n >= 0. Dividing them by 2 gives sequence A302927.
Note: Another probability distribution on the positive integers that has integral moments and cumulants is the geometric distribution p(k)=1/2^k. The sequences related to these moments are A000629, A000670, A052841, A091346.
LINKS
Albert Gordon Smith, Table of n, a(n) for n = 1..300
Christopher Genovese, Double Heads
FORMULA
In the following,
F(k) is the k-th Fibonacci number, as defined in the Comments.
phi=(1+sqrt(5))/2 is the golden ratio, and psi=(1-sqrt(5))/2.
Li(s,z) is the polylogarithm of order s and argument z.
When s is a negative integer as it is here, Li(s,z) is a rational function of z: Li(-n,z) = (z(d/dz))^n(z/(1-z)).
For n>=1:
a(n) = (1/2)A302922(n);
a(n) = (1/2)Sum_{k>=1} ((k^n)(F(k-1)/2^k));
a(n) = (1/2)Sum_{k>=1} ((k^n)(((phi^(k-1)-psi^(k-1))/sqrt(5))/2^k));
a(n) = (1/2)(Li(-n,phi/2)/phi-Li(-n,psi/2)/psi)/sqrt(5).
E.g.f.: (1/2)g(e^x) where g(x) = x^2/(4-2x-x^2) is the g.f. for the probability distribution.
EXAMPLE
a(1)=3 is half the first raw moment of the distribution. It is half the arithmetic average of integers following the distribution.
a(2)=29 is half the second raw moment. It is half the arithmetic average of the squares of integers following the distribution.
MATHEMATICA
Module[{max, r, g, rawMoments},
max = 17;
r = Range[0, max];
g[x_] := x^2/(4 - 2 x - x^2);
rawMoments = r! CoefficientList[Normal[Series[g[Exp[x]], {x, 0, max}]], x];
Rest[rawMoments]/2
]
CROSSREFS
Raw moments: A302922.
Central moments: A302924.
Central half-moments: A302925.
Cumulants: A302926.
Half-cumulants: A302927.
Sequence in context: A302582 A335867 A371652 * A370922 A366005 A376038
KEYWORD
nonn
AUTHOR
Albert Gordon Smith, Apr 15 2018
STATUS
approved