login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335867 a(n) = exp(-n) * Sum_{k>=0} n^k * (k - 1)^n / k!. 3
1, 0, 3, 29, 397, 6879, 144751, 3587100, 102351929, 3305310065, 119186370091, 4746969337923, 206966647324933, 9804683604806908, 501491905963040903, 27544070654283355889, 1616869985889305862385, 101020181695996141703335, 6693303018177050431484035, 468770856837303230888704208 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..200

Eric Weisstein's World of Mathematics, Bell Polynomial

FORMULA

a(n) = n! * [x^n] exp(n*(exp(x) - 1) - x).

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * BellPolynomial_k(n).

MATHEMATICA

Table[n! SeriesCoefficient[Exp[n (Exp[x] - 1) - x], {x, 0, n}], {n, 0, 19}]

Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, n], {k, 0, n}], {n, 0, 19}]

CROSSREFS

Cf. A000296, A217924, A242817, A334240, A335868.

Sequence in context: A168127 A262640 A302582 * A302923 A326433 A113871

Adjacent sequences:  A335864 A335865 A335866 * A335868 A335869 A335870

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Jun 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 16:07 EDT 2021. Contains 343995 sequences. (Running on oeis4.)