login
A370922
E.g.f. satisfies A(x) = log(1 + x/(1 - A(x)))/(1 - A(x)).
8
0, 1, 3, 29, 444, 9454, 257822, 8576504, 336770592, 15246592440, 781883091672, 44797478362680, 2836034500712256, 196601715537070752, 14811696896760459264, 1205008924460733794688, 105284627507520312994560, 9832559605580777568425856
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+2*k-2)!/(n+k-1)! * Stirling1(n,k).
E.g.f.: Series_Reversion( (1 - x) * (exp(x * (1 - x)) - 1) ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+2*k-2)!/(n+k-1)!*stirling(n, k, 1));
CROSSREFS
Sequence in context: A335867 A371652 A302923 * A366005 A376038 A326433
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved