login
A371326
E.g.f. satisfies A(x) = log(1 + x/(1 - A(x)))/(1 - A(x))^2.
2
0, 1, 5, 71, 1606, 50334, 2017840, 98597204, 5684225640, 377709287232, 28423701233784, 2389343434217376, 221907620769333648, 22565504728129558272, 2493614778861026071584, 297548320679718887153088, 38128996565367754662297600, 5222327925855459163424791680
OFFSET
0,3
FORMULA
a(n) = Sum_{k=1..n} (n+3*k-2)!/(n+2*k-1)! * Stirling1(n,k).
E.g.f.: Series_Reversion( (1 - x) * (exp(x * (1 - x)^2) - 1) ). - Seiichi Manyama, Sep 09 2024
PROG
(PARI) a(n) = sum(k=1, n, (n+3*k-2)!/(n+2*k-1)!*stirling(n, k, 1));
CROSSREFS
Cf. A370462.
Sequence in context: A033507 A092250 A362159 * A349471 A347989 A193436
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved