login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A033507 Number of matchings in graph P_{4} X P_{n}. 6
1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945, 2548684656, 30734932553, 370635224561, 4469527322891, 53898461609719, 649966808093412, 7838012982224913, 94519361817920403, 1139818186429110279, 13745178487929574337, 165754445655292452448 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Phys., 26(1985), 157-167.
LINKS
David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
Per Hakan Lundow, Computation of matching polynomials and the number of 1-factors in polygraphs, Research report, No 12, 1996, Department of Math., Umea University, Sweden.
Index entries for linear recurrences with constant coefficients, signature (9,41,-41,-111,91,29,-23,-1,1).
FORMULA
From Sergey Perepechko, Apr 24 2013: (Start)
a(n) = 9*a(n-1) +41*a(n-2) -41*a(n-3) -111*a(n-4) +91*a(n-5) +29*a(n-6) -23*a(n-7) -a(n-8) +a(n-9).
G.f.: (1-x) * (1 -3*x -18*x^2 +2*x^3 +12*x^4 +x^5 -x^6) / (1 -9*x -41*x^2 +41*x^3 +111*x^4 -91*x^5 -29*x^6 +23*x^7 +x^8 -x^9). (End)
EXAMPLE
a(1) = 5: the graph is
. o-o-o-o
and the five matchings are
. o o o o
. o-o o o
. o o-o o
. o o o-o
. o-o o-o
MAPLE
a:=array(0..20, [1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945]):
for j from 9 to 20 do
a[j]:=9*a[j-1]+41*a[j-2]-41*a[j-3]-111*a[j-4]+91*a[j-5]+
29*a[j-6]-23*a[j-7]-a[j-8]+a[j-9]
od:
convert(a, list);
# Sergey Perepechko, Apr 24 2013
MATHEMATICA
LinearRecurrence[{9, 41, -41, -111, 91, 29, -23, -1, 1}, {1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945}, 30] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9)) \\ G. C. Greubel, Oct 26 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) )); // G. C. Greubel, Oct 26 2019
(Sage)
def A033507_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x)*(1 -3*x-18*x^2+2*x^3+12*x^4+x^5-x^6)/(1-9*x-41*x^2+41*x^3+111*x^4-91*x^5 -29*x^6+23*x^7+x^8-x^9) ).list()
A033507_list(30) # G. C. Greubel, Oct 26 2019
(GAP) a:=[1, 5, 71, 823, 10012, 120465, 1453535, 17525619, 211351945];; for n in [10..30] do a[n]:=9*a[n-1]+41*a[n-2]-41*a[n-3]-111*a[n-4]+91*a[n-5] +29*a[n-6]-23*a[n-7]-a[n-8]+a[n-9]; od; a; # G. C. Greubel, Oct 26 2019
CROSSREFS
Column 4 of triangle A210662. Row sums of A100265.
For perfect matchings see A005178.
Bisection (even part) gives A260034.
Sequence in context: A197427 A197668 A064752 * A092250 A362159 A371326
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 15 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 17:12 EDT 2024. Contains 371845 sequences. (Running on oeis4.)