login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210662
Triangle read by rows: T(n,k) (1 <= k <= n) = number of monomer-dimer tilings of an n X k board.
17
1, 2, 7, 3, 22, 131, 5, 71, 823, 10012, 8, 228, 5096, 120465, 2810694, 13, 733, 31687, 1453535, 65805403, 2989126727, 21, 2356, 196785, 17525619, 1539222016, 135658637925, 11945257052321, 34, 7573, 1222550, 211351945, 36012826776, 6158217253688, 1052091957273408, 179788343101980135
OFFSET
1,2
COMMENTS
The triangle is half of a symmetric square array, since T(n,k) = T(k,n).
Equivalently, ways of paving n X k grid cells using only singletons and dominoes. Also, the number of tilings of an n X k chessboard with the two polyominoes (0,0) and (0,0)+(0,1).
Also, matchings of the n X k grid graph. The n X k grid graph is also denoted P_m X P_n. For k=2, this is called the ladder graph L_n.
In statistical mechanics, this is a special case of the Monomer-Dimer Problem, which deals with monomer-dimer coverings of a finite patch of a lattice.
Right hand diagonal is A028420. Left hand diagonal is A000045.
Taken as a full square array, columns (and rows) 1-7 respectively match A000045(n+1), A030186, A033506(n-1), A033507(n-1), A033508(n-1), A033509(n-1), A033510(n-1), and have recurrences of order 2 3 6 9 20 36 72. - R. H. Hardin, Dec 11 2012
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 406-412.
Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research reports, No 12, 1996, Department of Mathematics, Umea University.
LINKS
Ahrens, J. H. Paving the chessboard. J. Combin. Theory Ser. A 31(1981), no. 3, 277--288. MR0635371 (84d:05009). See Table I. - N. J. A. Sloane, Mar 27 2012
Anzalone, Nick, et al. A Reciprocity Theorem for Monomer-Dimer Coverings. DMCS. 2003. arXiv:math/0304359 [math.CO]
F. Cazals, Monomer-Dimer Tilings, 1997.
Steven R. Finch, Two Dimensional Monomer-Dimer Constant [Broken link]
Steven R. Finch, Two Dimensional Monomer-Dimer Constant [From the Wayback machine]
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 362
Friedland, Shmuel, and Uri N. Peled, Theory of Computation of Multidimensional Entropy with an Application to the Monomer-Dimer Problem. arXiv:math/0402009 [math.CO]
C. Kenyon, D. Randall, and A. Sinclair, Approximating the number of monomer-dimer coverings of a lattice, Journal of Statistical Physics 83 (1996), 637-659.
David Friedhelm Kind, The Gunport Problem: An Evolutionary Approach, De Montfort University (Leicester, UK, 2020).
D. Zeilberger, Source
FORMULA
T(1,n) = A000045(n+1), T(2,n) = A030186(n), T(3,n) = A033506(n), T(4,n) = A033507(n), T(5,n) = A033508(n), T(6,n) = A033509(n), T(7,n) = A033510(n), T(8,n) = A033511(n), T(9,n) = A033512(n), T(10,n) = A033513(n), T(11,n) = A033514(n), T(n,n) = A028420(n).
EXAMPLE
Triangle begins:
1
2 7
3 22 131
5 71 823 10012
8 228 5096 120465 2810694
13 733 31687 1453535 65805403 2989126727
21 2356 196785 17525619 1539222016 135658637925 11945257052321
34 7573 1222550 211351945 36012826776 6158217253688 1052091957273408 179788343101980135...
The 7 matchings of the P(2) X P(2)-graph are:
. . .-. . . . . . . . . .-.
| | | |
. . . . . . . . .-. . . .-.
PROG
(Sage)
from sage.combinat.tiling import TilingSolver, Polyomino
def T(n, k):
p = Polyomino([(0, 0)])
q = Polyomino([(0, 0), (0, 1)])
T = TilingSolver([p, q], box=[n, k], reusable=True)
return T.number_of_solutions()
# Ralf Stephan, May 22 2014
CROSSREFS
Sequence in context: A336854 A209666 A089124 * A229610 A117809 A052091
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 28 2012
EXTENSIONS
Typo in term 27 corrected by Alois P. Heinz, Dec 03 2012
Reviewed by Ralf Stephan, May 22 2014
STATUS
approved