login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117809
a(n,m) =Floor[N[(-2 + Sqrt[3])^n + (-2 - Sqrt[3])^n]/2^m].
1
-2, 7, 3, -26, -13, -7, 96, 48, 24, 12, -362, -181, -91, -46, -23, 1350, 675, 337, 168, 84, 42, -5042, -2521, -1261, -631, -316, -158, -79, 18816, 9408, 4704, 2352, 1176, 588, 294, 147, -70226, -35113, -17557, -8779, -4390, -2195, -1098, -549, -275, 262086, 131043, 65521, 32760, 16380, 8190, 4095
OFFSET
0,1
COMMENTS
A triangular prime alternating sign Binet like function.
EXAMPLE
-2
7, 3
-26, -13,-7
96, 48, 24, 12
-362,-181, -91, -46, -23
1350, 675, 337, 168, 84, 42
MATHEMATICA
f[n_, m_] = N[(-2 + Sqrt[3])^n + (-2 - Sqrt[3])^n]/2^m a = Table[Table[Floor[f[n, m]], {m, 1, n}], {n, 1, 10}] aa = Flatten[a] pp = Flatten[Table[If[PrimeQ[aa[[n]]], aa[[n]], {}], {n, 1, Length[aa]}]] Length[pp]/Length[aa]
CROSSREFS
Sequence in context: A089124 A210662 A229610 * A052091 A090276 A249782
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 29 2006
STATUS
approved