login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209666
T(n,k) = count of degree k monomials in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
4
1, 2, 7, 3, 18, 55, 5, 50, 216, 631, 7, 118, 729, 2780, 8001, 11, 301, 2621, 12954, 45865, 130453, 15, 684, 8535, 55196, 241870, 820554, 2323483, 22, 1621, 28689, 241634, 1307055, 5280204, 17353028, 48916087, 30, 3620, 91749, 1012196, 6783210, 32711022, 124991685, 401709720, 1129559068
OFFSET
1,2
LINKS
EXAMPLE
Table starts as:
1;
2, 7;
3, 18, 55;
5, 50, 216, 631;
7, 118, 729, 2780, 8001;
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Mar 04 2016
MATHEMATICA
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
CROSSREFS
Main diagonal is A209668; row sums are A209667.
Sequence in context: A138751 A112303 A336854 * A089124 A210662 A229610
KEYWORD
nonn,tabl
AUTHOR
Wouter Meeussen, Mar 11 2012
STATUS
approved