login
A209667
a(n) = count of monomials, of degrees k=0 to n, in the complete homogeneous symmetric polynomials h(mu,k) summed over all partitions mu of n.
4
1, 1, 9, 76, 902, 11635, 192205, 3450337, 73128340, 1696862300, 44414258862, 1264163699189, 39640715859359, 1340191402045395, 49097854149726795, 1924982506686743639, 80831323253459088871, 3607487926962810556542, 170964537623741430399076
OFFSET
0,3
LINKS
FORMULA
Row sums of table A209666.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(i+k-1, k-1)^j, j=0..n/i)))
end:
a:= n-> add(b(n$2, k), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 04 2016
MATHEMATICA
h[n_, v_] := Tr@ Apply[Times, Table[Subscript[x, j], {j, v}]^# & /@ Compositions[n, v], {1}]; h[par_?PartitionQ, v_] := Times @@ (h[#, v] & /@ par); Tr/@ Table[Tr[(h[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Mar 11 2012
EXTENSIONS
a(0), a(11)-a(18) from Alois P. Heinz, Mar 04 2016
STATUS
approved