login
A209670
a(n) = count of monomials, of degrees k=1 to n, in the elementary symmetric polynomials e(mu,k) summed over all partitions mu of n.
4
1, 6, 48, 547, 7301, 120315, 2239803, 48278809, 1153934735, 30834749017, 900390736548, 28782727026031, 993911439932097, 37039780178206877, 1477457354215115765, 62950691931099382408, 2849385291187650049208, 136701569959985165325989, 6924379544998951633495956
OFFSET
1,2
LINKS
FORMULA
Row sums of triangle A209669.
MATHEMATICA
e[n_, v_] := Tr[Times @@@ Select[Subsets[Table[Subscript[x, j], {j, v}]], Length[#] == n &]]; e[par_?PartitionQ, v_] := Times @@ (e[#, v] & /@ par); Tr/@ Table[Tr[(e[#, k] & /@ Partitions[l]) /. Subscript[x, _] -> 1], {l, 10}, {k, l}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Mar 11 2012
EXTENSIONS
More terms from Peter J. Taylor, Mar 02 2017
STATUS
approved