The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A335868 a(n) = exp(n) * Sum_{k>=0} (-n)^k * (k - 1)^n / k!. 5
 1, -2, 7, -31, 149, -631, 475, 43210, -844727, 10960505, -86569889, -584746911, 46302579229, -1304510879686, 25366896568707, -277053418780891, -4271166460501743, 384590020131637825, -14617527176248527545, 380117694164438489422, -5265650620303861935579 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..200 Eric Weisstein's World of Mathematics, Bell Polynomial FORMULA a(n) = n! * [x^n] exp(n*(1 - exp(x)) - x). a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * BellPolynomial_k(-n). MATHEMATICA Table[n! SeriesCoefficient[Exp[n (1 - Exp[x]) - x], {x, 0, n}], {n, 0, 20}] Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}] CROSSREFS Cf. A109747, A292866, A334241, A335867. Sequence in context: A114198 A055836 A076177 * A126033 A323632 A256672 Adjacent sequences:  A335865 A335866 A335867 * A335869 A335870 A335871 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jun 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 06:57 EDT 2021. Contains 343636 sequences. (Running on oeis4.)