login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109747 E.g.f.: exp(-exp(-x)+1+x). 4
1, 2, 3, 3, 2, 3, 5, -4, 5, 55, -212, 201, 2381, -15350, 35183, 145359, -1821438, 8117231, -521487, -278996548, 2261959961, -7554900397, -34727188796, 690775844605, -4901767330647, 10921820177234, 179314430713387, -2668801066419061, 18150518618843778 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equals double binomial transform of A014182. - Gary W. Adamson, Dec 31 2008

LINKS

Table of n, a(n) for n=0..28.

FORMULA

a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*A000522(k).

G.f. = (1 - x^2 * Sum_{k>0} k * x^k / ((1 + x) * (1 + 2*x) + ... (1 + k*x))) / (1 - x)^2. - Michael Somos, Nov 07 2014

G.f.: 1/(1-x*Q(0)), where Q(k)= 1 + x/(1 - x - x*(k+1)/(x - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 19 2013

G.f.: 1/W(0), where W(k) = 1 - x - x/(1 + x*(k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 07 2014

EXAMPLE

G.f. = 1 + 2*x + 3*x^2 + 3*x^3 + 2*x^4 + 3*x^5 + 5*x^6 - 4*x^7 + 5*x^8 + 55*x^9 + ...

MAPLE

G:=exp(-exp(-x)+1+x): Gser:=series(G, x=0, 32): seq(n!*coeff(Gser, x, n), n=0..28); # Emeric Deutsch, Apr 10 2006

MATHEMATICA

With[{nn=30}, CoefficientList[Series[Exp[-Exp[-x]+1+x], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Jun 22 2018 *)

CROSSREFS

Cf. A080094.

Cf. A014182. - Gary W. Adamson, Dec 31 2008

Sequence in context: A002963 A046677 A283104 * A105612 A141744 A089783

Adjacent sequences:  A109744 A109745 A109746 * A109748 A109749 A109750

KEYWORD

easy,sign

AUTHOR

Franklin T. Adams-Watters and Vladeta Jovovic, Aug 10 2005

EXTENSIONS

More terms from Emeric Deutsch, Apr 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 16:32 EDT 2019. Contains 327966 sequences. (Running on oeis4.)