login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292866
a(n) = n! * [x^n] exp(n*(1 - exp(x))).
10
1, -1, 2, -3, -20, 370, -4074, 34293, -138312, -2932533, 106271090, -2192834490, 32208497124, -206343936097, -7657279887698, 412496622532785, -12455477719752976, 260294034150380430, -2256541295745391542, -122593550603339550843, 8728842979656718306780
OFFSET
0,3
LINKS
FORMULA
a(n) = exp(n) * Sum_{k>=0} (-n)^k*k^n/k!. - Ilya Gutkovskiy, Jul 13 2019
a(n) = Sum_{k=0..n} (-n)^k * Stirling2(n,k). - Seiichi Manyama, Jul 28 2019
a(n) = BellPolynomial(n, -n). - Peter Luschny, Dec 23 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
-(1+add(binomial(n-1, j-1)*b(n-j, k), j=1..n-1))*k)
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
Table[n!*SeriesCoefficient[E^(n*(1 - E^x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Sep 25 2017 *)
a[n_] := BellB[n, -n]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Dec 23 2021 *)
PROG
(Ruby)
def ncr(n, r)
return 1 if r == 0
(n - r + 1..n).inject(:*) / (1..r).inject(:*)
end
def A(k, n)
ary = [1]
(1..n).each{|i| ary << k * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[j]}}
ary
end
def A292866(n)
(0..n).map{|i| A(-i, i)[-1]}
end
p A292866(20)
(PARI) {a(n) = sum(k=0, n, (-n)^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 28 2019
CROSSREFS
Main diagonal of A292861.
Cf. A242817.
Sequence in context: A006246 A349600 A110372 * A132421 A132500 A129411
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 25 2017
STATUS
approved