login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A292864
Decimal expansion of Product_{k>=1} (1 - exp(-16*Pi*k)).
21
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 5, 2, 0, 9, 6, 5, 3, 8, 4, 0, 3, 8, 2, 1, 4, 3, 4, 7, 4, 5, 7, 7, 5, 5, 7, 0, 0, 4, 9, 4, 1, 6, 3, 1, 3, 1, 4, 3, 4, 3, 3, 1, 1, 3, 7, 1, 7, 6, 6, 7, 2, 0, 2, 2, 1, 4, 4, 9, 4, 7, 6, 1, 6, 8, 9, 7, 0, 9, 0, 9, 5, 2, 0, 5, 8, 6, 9, 3, 8, 7, 6, 7, 4, 9
OFFSET
0,1
LINKS
Eric Weisstein's World of Mathematics, Dedekind Eta Function
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol
Wikipedia, Euler function
FORMULA
Equals (3*sqrt(22*sqrt(2) - 24) - 8)^(1/8) * exp(2*Pi/3) * Gamma(1/4) / (2^(19/8) * Pi^(3/4)).
EXAMPLE
0.999999999999999999999852096538403821434745775570049416313143433113717...
MATHEMATICA
RealDigits[(3*Sqrt[-24 + 22*Sqrt[2]] - 8)^(1/8) * E^(2*Pi/3) * Gamma[1/4] / (2^(19/8)*Pi^(3/4)), 10, 120][[1]]
RealDigits[QPochhammer[E^(-16*Pi)], 10, 120][[1]]
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Sep 25 2017
STATUS
approved