OFFSET
0,1
LINKS
Istvan Mezo, Several special values of Jacobi theta functions arXiv:1106.2703v3 [math.CA] 24 Sep 2013
Eric Weisstein's MathWorld, Infinite Product
Eric Weisstein's MathWorld, Jacobi Theta Functions
Eric Weisstein's MathWorld, q-Pochhammer Symbol
Wikipedia, Euler function
FORMULA
phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-2*Pi)) = exp(Pi/12)*Gamma(1/4)/(2*Pi^(3/4)).
EXAMPLE
0.99812906992595851327996232224527387813073843536581646175407814028299858...
MATHEMATICA
phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-2Pi]], 10, 104] // First
CROSSREFS
Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).
KEYWORD
AUTHOR
Jean-François Alcover, Jun 19 2015
STATUS
approved