login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132038
Decimal expansion of Product_{k>0} (1-1/10^k).
32
8, 9, 0, 0, 1, 0, 0, 9, 9, 9, 9, 8, 9, 9, 9, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 9, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9
OFFSET
0,1
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009, page 49.
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
FORMULA
Equals exp( -Sum_{n>0} sigma_1(n)/(n*10^n) ).
Equals (1/10; 1/10)_{infinity}, where (a; q)_{infinity} is the q-Pochhammer symbol. - G. C. Greubel, Nov 30 2015
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(2*Pi/log(10)) * exp(log(10)/24 - Pi^2/(6*log(10))) * Product_{k>=1} (1 - exp(-4*k*Pi^2/log(10))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027878(n). (End)
EXAMPLE
0.8900100999989990000001000...
MATHEMATICA
digits = 105; Clear[p]; p[n_] := p[n] = RealDigits[Product[1-1/10^k , {k, 1, n}], 10, digits] // First; p[10]; p[n=20]; While[p[n] != p[n/2], n = 2*n]; p[n] (* Jean-François Alcover, Feb 17 2014 *)
RealDigits[QPochhammer[1/10], 10, 105][[1]] (* Jean-François Alcover, Nov 18 2015 *)
N[QPochhammer[1/10, 1/10]] (* G. C. Greubel, Nov 30 2015 *)
PROG
(PARI) prodinf(x=1, -.1^x, 1) \\ Charles R Greathouse IV, Nov 16 2013
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 14 2007
STATUS
approved