login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132039 E.g.f.: A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( Sum_{n>=0} a(n)*x^(n+1)/(n+1) ) with a(0) = 1. 3
1, 1, 2, 8, 74, 2122, 267292, 194323504, 980945301116, 39560543100700028, 14356125485861852659544, 52095666080476161483596777824, 2079492908949143825845786572097662328, 996080457608702027557335524810508733871848312 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Shifts A132039(n-1), n >= 1, one place left under MNL transform, see A274760. Pointed out by Paul D. Hanna. - Johannes W. Meijer, Aug 03 2016

LINKS

Table of n, a(n) for n=0..13.

FORMULA

a(n+1) = Sum_{k=0..n} n!/k!*a(k)*a(n-k). - Vladeta Jovovic, Jul 08 2008

EXAMPLE

E.g.f.: A(x) = 1 + 1*x + 2*x^2/2! + 8*x^3/3! + 74*x^4/4! + 2122*x^5/5! +...;

E.g.f.: A(x) = exp(x + 1*x^2/2 + 2*x^3/3 + 8*x^4/4 + 74*x^5/5 + 2122*x^6/6 +...) .

MAPLE

A132039 := proc(n) option remember: if n=0 then 1 else add((n-1)!/k!*A132039(k)*A132039(n-1-k), k=0..n-1) fi: end: seq(A132039(n), n=0..13);

nmax:=13: t1 := add(a(n)*x^n/n!, n=0..nmax): t2 := series(exp(add(a(n)*x^(n+1)/(n+1), n=0..nmax)), x, nmax+1): a(0) := 1: for n from 1 to nmax do a(n) := n!*coeff(t2, x, n) od: A132039 := proc(n): a(n) end: seq(A132039(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2016

PROG

(PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(k=0, n-1, a(k)*x^(k+1)/(k+1))+x^2*O(x^n)), n))}

CROSSREFS

Cf. A274760, A007548, A275593, A275594.

Sequence in context: A143760 A064605 A295373 * A204552 A002668 A193205

Adjacent sequences:  A132036 A132037 A132038 * A132040 A132041 A132042

KEYWORD

nonn,eigen

AUTHOR

Paul D. Hanna, Aug 07 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 17:12 EDT 2019. Contains 324196 sequences. (Running on oeis4.)