login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132039
E.g.f.: A(x) = Sum_{n>=0} a(n)*x^n/n! = exp( Sum_{n>=0} a(n)*x^(n+1)/(n+1) ) with a(0) = 1.
3
1, 1, 2, 8, 74, 2122, 267292, 194323504, 980945301116, 39560543100700028, 14356125485861852659544, 52095666080476161483596777824, 2079492908949143825845786572097662328, 996080457608702027557335524810508733871848312
OFFSET
0,3
COMMENTS
Shifts A132039(n-1), n >= 1, one place left under MNL transform, see A274760. Pointed out by Paul D. Hanna. - Johannes W. Meijer, Aug 03 2016
FORMULA
a(n+1) = Sum_{k=0..n} n!/k!*a(k)*a(n-k). - Vladeta Jovovic, Jul 08 2008
EXAMPLE
E.g.f.: A(x) = 1 + 1*x + 2*x^2/2! + 8*x^3/3! + 74*x^4/4! + 2122*x^5/5! +...;
E.g.f.: A(x) = exp(x + 1*x^2/2 + 2*x^3/3 + 8*x^4/4 + 74*x^5/5 + 2122*x^6/6 +...) .
MAPLE
A132039 := proc(n) option remember: if n=0 then 1 else add((n-1)!/k!*A132039(k)*A132039(n-1-k), k=0..n-1) fi: end: seq(A132039(n), n=0..13);
nmax:=13: t1 := add(a(n)*x^n/n!, n=0..nmax): t2 := series(exp(add(a(n)*x^(n+1)/(n+1), n=0..nmax)), x, nmax+1): a(0) := 1: for n from 1 to nmax do a(n) := n!*coeff(t2, x, n) od: A132039 := proc(n): a(n) end: seq(A132039(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2016
PROG
(PARI) {a(n)=if(n==0, 1, n!*polcoeff(exp(sum(k=0, n-1, a(k)*x^(k+1)/(k+1))+x^2*O(x^n)), n))}
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Paul D. Hanna, Aug 07 2007
STATUS
approved