login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193205
G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n * (Sum_{k=0..n} C(n,k)^2*x^k), where g.f. A(x) = Sum_{n>=1} a(n)*x^n.
1
1, 1, 2, 8, 76, 1452, 45612, 2095992, 131601136, 10790109464, 1117867502280, 142679360514256, 21987281765799840, 4023859534010994768, 862536439626951197192, 214034590216271750690880, 60867125826968771742513120, 19663683837171331703090010864
OFFSET
1,3
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 8*x^4 + 76*x^5 + 1452*x^6 + 45612*x^7 +...
where
A(A(x)) = x*(1+x) + x^2*(1+4*x+x^2) + 2*x^3*(1+9*x+9*x^2+x^3) + 8*x^4*(1+16*x+36*x^2+16*x^3+x^4) + 76*x^5*(1+25*x+100*x^2+100*x^3+25*x^4+x^5) +...
Explicitly,
A(A(x)) = x + 2*x^2 + 6*x^3 + 27*x^4 + 222*x^5 + 3642*x^6 + 105612*x^7 +...
PROG
(PARI) {a(n)=local(A=[1], F=x, G=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
G=sum(m=1, #A-1, A[m]*x^m*sum(k=0, m, binomial(m, k)^2*x^k) +x*O(x^#A));
A[#A]=Vec(G)[#A]-Vec(subst(F, x, F))[#A]); if(n<1, 0, A[n])}
CROSSREFS
Cf. A193206.
Sequence in context: A132039 A204552 A002668 * A303943 A295345 A329968
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved