login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193203
G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n * (1+2^n*x)^n, where g.f. A(x) = Sum_{n>=1} a(n)*x^n.
1
1, 2, 8, 136, 8256, 1405440, 602922752, 618218766848, 1468496379454976, 7913439173996188672, 95288304033198904688640, 2534320562857451371729985536, 147510069367873486819642346127360, 18647939279377935249755798151259226112
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 8*x^3 + 136*x^4 + 8256*x^5 + 1405440*x^6 +...
where
A(A(x)) = x*(1+2*x) + 2*x^2*(1+4*x)^2 + 8*x^3*(1+8*x)^3 + 136*x^4*(1+16*x)^4 + 8256*x^5*(1+32*x)^5 +...+ a(n)*x^n*(1+2^n*x)^n +...
Explicitly,
A(A(x)) = x + 4*x^2 + 24*x^3 + 360*x^4 + 18496*x^5 + 2939392*x^6 +...
PROG
(PARI) {a(n)=local(A=[1], F=x, G=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
G=sum(m=1, #A-1, A[m]*x^m*(1+2^m*x+x*O(x^#A))^m);
A[#A]=Vec(G)[#A]-Vec(subst(F, x, F))[#A]); if(n<1, 0, A[n])}
CROSSREFS
Cf. A193204.
Sequence in context: A337296 A111827 A045330 * A259126 A140050 A318038
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved