login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193204
G.f. satisfies: A(A(x)) = Sum_{n>=1} a(n)*x^n / (1-2^n*x)^n, where g.f. A(x) = Sum_{n>=1} a(n)*x^n.
1
1, 2, 12, 264, 18192, 3363168, 1536410944, 1659081681024, 4119831378999040, 23085227981131301376, 287864665471943041639424, 7902500071635377252245854208, 473485024165978066993819500335104, 61476984240894226792319001395455369216
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 12*x^3 + 264*x^4 + 18192*x^5 + 3363168*x^6 +...
where
A(A(x)) = x/(1-2*x) + 2*x^2/(1-4*x)^2 + 12*x^3/(1-8*x)^3 + 264*x^4/(1-16*x)^4 + 18192*x^5/(1-32*x)^5 +...+ a(n)*x^n/(1-2^n*x)^n +...
Explicitly,
A(A(x)) = x + 4*x^2 + 32*x^3 + 656*x^4 + 40224*x^5 + 7013760*x^6 +...
PROG
(PARI) {a(n)=local(A=[1], F=x, G=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A);
G=sum(m=1, #A-1, A[m]*x^m/(1-2^m*x+x*O(x^#A))^m);
A[#A]=Vec(G)[#A]-Vec(subst(F, x, F))[#A]); if(n<1, 0, A[n])}
CROSSREFS
Cf. A193203.
Sequence in context: A012549 A009610 A012546 * A289314 A091504 A098137
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 19 2011
STATUS
approved