login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275594
Shifts 3 places left under MNL transform.
3
1, 1, 1, 1, 2, 6, 24, 144, 1464, 26808, 935184, 67404816, 10401844896, 3508019017056, 2732681228689152, 5018025242941566336, 21914759744001662937984, 238559201308551667344338304, 6565759935393013059564090526464
OFFSET
1,5
COMMENTS
Shifts three places left under MNL transform, see A274760.
The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.
LINKS
M. Bernstein and N. J. A. Sloane, Some Canonical Sequences of Integers Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
MAPLE
mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=3, 1, d(n-3)): A275594 := n-> c(n): seq(A275594(n), n=1..19);
MATHEMATICA
mnltr[p_] := Module[{g}, g[n_] := g[n] = If [n == 0, 1, Sum[((n-1)!/(n-k)!) *p[k]*g[n-k], {k, 1 n}]]; g]; d = mnltr[c]; c [n_] := If[n <= 3, 1, d[n - 3]]; A275594[n_] := c[n]; Table[A275594[n], {n, 1, 19}] (* Jean-François Alcover, Jul 22 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Johannes W. Meijer, Aug 03 2016
STATUS
approved