login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275596
Primes p such that q is the least prime factor > p of 2^(p-1)-1 and p is the greatest prime factor < q of 2^(q-1)-1.
0
11, 17, 23, 31, 37, 59, 73, 83, 97, 103, 167, 233, 257, 263, 307, 359, 401, 431, 433, 443, 467, 479, 487, 491, 499, 569, 727, 733, 743, 773, 839, 863, 877, 911, 919, 971, 991, 1013, 1039, 1069, 1091, 1097, 1103, 1153, 1163, 1193, 1229, 1237, 1297, 1409
OFFSET
1,1
COMMENTS
Associated primes q = 31, 257, 89, 151, 73, ...
If p is in the sequence, then 2^(q-p) == 1 (mod pq).
If p is in the sequence, then 2^gcd(p-1,q-1) == 1 (mod pq). - Robert Israel, Aug 03 2016
From Thomas Ordowski, Aug 03 2016: (Start)
Theorem: if p == 1 (mod 4) and q = 2p-1 are primes, then 2^(q-p) == 1 (mod pq); such p = 37, 97, 157, 229, ...
Thus q divides 2^(p-1)-1 and p divides 2^(q-1)-1.
Problem: are there infinitely many pairs of primes p < q such that 2^(q-p) == 1 (mod pq)?
Lemma: let p < q are primes, then 2^(pq-1) == 1 (mod pq) if and only if 2^(q-p) == 1 (mod pq). (End)
EXAMPLE
For p=11 and q=31, 2^(p-1)-1 = 3*p*q and 2^(q-1)-1 = 3*3*7*p*q*151*331.
MAPLE
filter:= proc(p)
local Q, q, t;
if not isprime(p) then return false fi;
Q:= select(type, map(t -> t[1], ifactors(2^(p-1)-1, easy)[2]), integer);
q:= min(select(`>`, Q, p));
if not q::integer then
q:= min(select(`>`, numtheory:-factorset(2^(p-1)-1), p));
if not q::integer then return false fi;
fi;
if 2 &^(q-1) mod p <> 1 then return false fi;
for t from p+2 to q-2 by 2 do
if isprime(t) and 2 &^(q-1) mod t = 1 then return false fi
od;
true
end proc;
select(filter, [seq(p, p=3..700, 2)]); # Robert Israel, Aug 03 2016
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(f=factor(2^(n-1)-1)[, 1], q); f=select(k->k>n, f); if(#f==0, return(0)); q=f[1]; forprime(p=n+1, q-1, if(Mod(2, p)^(q-1)==1, return(0))); Mod(2, n)^(q-1)==1 \\ Charles R Greathouse IV, Aug 03 2016
CROSSREFS
Sequence in context: A145481 A006621 A337359 * A158913 A363638 A066938
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Aug 03 2016
EXTENSIONS
a(2) inserted by Charles R Greathouse IV, Aug 03 2016
a(6)-a(21) from Charles R Greathouse IV, Aug 03 2016
a(22)-a(30) from Robert Israel, Aug 03 2016
a(31)-a(50) from Charles R Greathouse IV, Aug 03 2016
STATUS
approved