

A337359


Primes r between two consecutive squares of primes p^2 and q^2 such that p^2 + q^2  r is prime as well.


1



11, 17, 23, 31, 37, 43, 61, 67, 73, 97, 103, 109, 127, 139, 151, 163, 181, 229, 277, 313, 337, 367, 433, 457, 523, 541, 547, 601, 613, 619, 631, 643, 661, 709, 727, 739, 751, 757, 769, 823, 829, 883, 919, 1009, 1033, 1039, 1051, 1093, 1117, 1129, 1201, 1213, 1237, 1279
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Certain terms are paired (e.g. 11 and 23, 31 and 43) but some terms are standalone (e.g. 17, 37) as they are the same distance from both consecutive prime squares. Unknown if this sequence terminates.


LINKS

David A. Corneth, Table of n, a(n) for n = 1..10000


EXAMPLE

11 and 23 are terms because 11 = 3^2 + 2 = 5^2  14 and 23 = 3^2 + 14 = 5^2  2.
17 is a term because 17 = 3^2 + 8 = 5^2  8.


PROG

(PARI) ok(p)={if(p>4 && isprime(p), my(q=precprime(sqrtint(p))); isprime(nextprime(q+1)^2 + q^2  p), 0)} \\ Andrew Howroyd, Aug 24 2020
(PARI) upto(n) = {q = 3; my(res = List()); forprime(p = 5, nextprime(sqrtint(n)), s = p^2 + q^2; forprime(r = q^2, s/2, if(isprime(s  r), listput(res, r); listput(res, sr); ) ); q = p; ); Set(res); } \\ David A. Corneth, Aug 24 2020


CROSSREFS

Sequence in context: A265402 A145481 A006621 * A275596 A158913 A066938
Adjacent sequences: A337356 A337357 A337358 * A337360 A337361 A337362


KEYWORD

nonn


AUTHOR

Isaac Walters, Aug 24 2020


EXTENSIONS

Terms a(42) and beyond from Andrew Howroyd, Aug 24 2020
Definition made precise by David A. Corneth, Aug 24 2020
a(32) corrected by David A. Corneth, Aug 25 2020


STATUS

approved



