|
|
A006621
|
|
Zarankiewicz's problem k_3(n,n+1).
(Formerly M4776)
|
|
1
|
|
|
|
OFFSET
|
3,1
|
|
COMMENTS
|
a(n) is the least k such that every n X (n+1) {0,1}-matrix with k ones contains an all ones 3 X 3 submatrix. - Sean A. Irvine, May 18 2017
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
Table of n, a(n) for n=3..12.
R. K. Guy, A many-facetted problem of Zarankiewicz, Lect. Notes Math. 110 (1969), 129-148.
|
|
CROSSREFS
|
Cf. A001198 (k_3(n)), A006620 (k_2(n,n+1)), A006626 (k_4(n,n+1)).
Sequence in context: A275682 A265402 A145481 * A337359 A275596 A158913
Adjacent sequences: A006618 A006619 A006620 * A006622 A006623 A006624
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
N. J. A. Sloane
|
|
EXTENSIONS
|
a(10)-a(12) from Andrew Howroyd, Dec 26 2021
|
|
STATUS
|
approved
|
|
|
|