login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191006
Number of n X n symmetric binary matrices with each 1 adjacent to exactly 1 diagonally neighboring 1
1
1, 2, 6, 24, 144, 1296, 16848, 320112, 8963136, 367488576, 22049314560, 1940339681280, 250303818885120, 47307421769287680, 13104155830092687360, 5320287267017631068160, 3165570923875490485555200
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = a(n-1) * A000930(n+1), so from the formula there
Empirical: a(n) = product(sum(binomial(k+1-2*i,i), i=0..floor((k+1)/3)), k=1..n)
EXAMPLE
Some solutions for n=5
..0..0..0..1..0....0..0..0..1..0....1..1..1..1..0....1..0..0..1..0
..0..0..1..0..1....0..0..0..0..1....1..1..1..1..1....0..1..0..1..1
..0..1..1..1..0....0..0..0..1..0....1..1..0..0..0....0..0..0..1..1
..1..0..1..1..0....1..0..1..0..1....1..1..0..1..0....1..1..1..1..1
..0..1..0..0..0....0..1..0..1..0....0..1..0..0..1....0..1..1..1..1
CROSSREFS
a(n+1)/a(n) is A000930(n+2)
Sequence in context: A375812 A375808 A258325 * A082471 A275594 A013010
KEYWORD
nonn
AUTHOR
R. H. Hardin Jun 16 2011
STATUS
approved