login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191005
E.g.f. cos(x)/(cos(x)-x)
0
1, 1, 2, 9, 48, 325, 2640, 24997, 270592, 3295017, 44582400, 663532001, 10773295104, 189494874413, 3589475821568, 72849709631805, 1577078610001920, 36275031333172945, 883457851718762496, 22711455593084360761, 614582936996534026240
OFFSET
0,3
FORMULA
a(n)=n!*(2*sum(m..1,(n-1)/2, (sum(j=0..m, binomial(n/2-m+j-1,j)*4^(m-j)*sum(i=0..j, (i-j)^(2*m)*binomial(2*j,i)*(-1)^(m+j-i))))/(2*m)!)+1), n>0, a(0)=1.
a(n) ~ n! * cos(r)/((1+sin(r))*r^(n+1)), where r = 0.73908513321516... is the root of the equation r = cos(r). - Vaclav Kotesovec, Jun 27 2013
MATHEMATICA
CoefficientList[Series[Cos[x]/(Cos[x]-x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 27 2013 *)
PROG
(Maxima)
a(n):=n!*(2*sum((sum(binomial(n/2-m+j-1, j)*4^(m-j)*sum((i-j)^(2*m)*binomial(2*j, i)*(-1)^(m+j-i), i, 0, j), j, 0, m))/(2*m)!, m, 1, (n-1)/2)+1);
CROSSREFS
Sequence in context: A358264 A375795 A246759 * A257544 A295944 A356632
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jun 16 2011
STATUS
approved