login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191004
Number of ways to write n = p+q+(n mod 2)q, where p is an odd prime and q<=n/2 is a prime such that JacobiSymbol[q,n]=1 if n is odd, and JacobiSymbol[(q+1)/2,n+1]=1 if n is even
2
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 3, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 2, 4, 3, 5, 4, 1, 4, 1, 2, 3, 2, 2, 2, 3, 1, 4, 1, 2, 4, 2, 2, 3, 1, 2, 4, 5, 3, 3, 1, 4, 3, 2, 3, 5, 3, 4, 8, 2, 2, 7, 4, 4, 5, 2, 2, 6, 3, 3, 4, 4, 2, 4, 2, 1, 4, 4
OFFSET
1,14
COMMENTS
Conjecture: a(n)>0 for all n>5.
We have verified this for n up to 10^9. It is stronger than Goldbach's conjecture and Lemoine's conjecture.
Zhi-Wei Sun also conjectured the following refinement: Any odd number 2n+1>64 not among 105, 247, 255, 1105 can be written as p+2q, where p and q are primes, and JacobiSymbol[q,p']=1 for any prime divisor p' of 2n+1; also, any even number 2n>8 not among 32 and 152 can be written as p+q, where p and q<=n/2 are primes, and JacobiSymbol[(q+1)/2,p']=1 for any prime divisor p' of 2n+1.
EXAMPLE
a(19)=1 since 19=5+2*7 with JacobiSymbol[7,19]=1.
a(32)=1 since 32=29+3 with JacobiSymbol[(3+1)/2,32+1]=1.
MATHEMATICA
a[n_]:=a[n]=Sum[If[(Mod[n, 2]==1&&PrimeQ[n-2Prime[k]]==True&&JacobiSymbol[Prime[k], n]==1)||(Mod[n, 2]==0&&n-Prime[k]>2&&PrimeQ[n-Prime[k]]==True&&JacobiSymbol[(Prime[k]+1)/2, n+1]==1), 1, 0], {k, 1, PrimePi[n/2]}]
Do[Print[n, " ", a[n]], {n, 1, 200}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 30 2012
STATUS
approved