login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A191003 E.g.f. arctan(x/cos(x)) (odd powers only). 4
1, 1, -11, -83, 6921, 60281, -29132611, 208438245, 427918448785, -22588439158415, -15853957892902395, 2325342085659612317, 1210510298677225936025, -389238357419648883489303, -164119044571112073285613619 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..14.

FORMULA

a(n)=(2*n+1)!*(2*sum(m=0..n-1, ((-1)^(m)*sum(j=0..(n-m), binomial(m+j-1/2,j)*4^(n-m-j)*sum(i=0..j, (i-j)^(2*n-2*m)*binomial(2*j,i)*(-1)^(n-m+j-i))))/((2*m+1)*(2*n+1-2*m-1)!))+(-1)^(n)/(2*n+1)).

EXAMPLE

arctan(x/cos(x)) = x + 1/6*x^3 - 11/120*x^5 - 83/5040*x^7 +- ...

MATHEMATICA

With[{nn=30}, Take[CoefficientList[Series[ArcTan[x/Cos[x]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, May 28 2014 *)

PROG

(Maxima)

a(n):=(2*n+1)!*(2*sum(((-1)^(m)*sum(binomial(m+j-1/2, j)*4^(n-m-j)*sum((i-j)^(2*n-2*m)*binomial(2*j, i)*(-1)^(n-m+j-i), i, 0, j), j, 0, (n-m)))/((2*m+1)*(2*n+1-2*m-1)!), m, 0, n-1)+(-1)^(n)/(2*n+1));

CROSSREFS

Sequence in context: A167577 A129077 A152582 * A012478 A239461 A330966

Adjacent sequences:  A191000 A191001 A191002 * A191004 A191005 A191006

KEYWORD

sign

AUTHOR

Vladimir Kruchinin, Jun 16 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 13:12 EDT 2021. Contains 345080 sequences. (Running on oeis4.)