login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191003
E.g.f. arctan(x/cos(x)) (odd powers only).
4
1, 1, -11, -83, 6921, 60281, -29132611, 208438245, 427918448785, -22588439158415, -15853957892902395, 2325342085659612317, 1210510298677225936025, -389238357419648883489303, -164119044571112073285613619
OFFSET
0,3
FORMULA
a(n)=(2*n+1)!*(2*sum(m=0..n-1, ((-1)^(m)*sum(j=0..(n-m), binomial(m+j-1/2,j)*4^(n-m-j)*sum(i=0..j, (i-j)^(2*n-2*m)*binomial(2*j,i)*(-1)^(n-m+j-i))))/((2*m+1)*(2*n+1-2*m-1)!))+(-1)^(n)/(2*n+1)).
EXAMPLE
arctan(x/cos(x)) = x + 1/6*x^3 - 11/120*x^5 - 83/5040*x^7 +- ...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[ArcTan[x/Cos[x]], {x, 0, nn}], x] Range[0, nn-1]!, {2, -1, 2}]] (* Harvey P. Dale, May 28 2014 *)
PROG
(Maxima)
a(n):=(2*n+1)!*(2*sum(((-1)^(m)*sum(binomial(m+j-1/2, j)*4^(n-m-j)*sum((i-j)^(2*n-2*m)*binomial(2*j, i)*(-1)^(n-m+j-i), i, 0, j), j, 0, (n-m)))/((2*m+1)*(2*n+1-2*m-1)!), m, 0, n-1)+(-1)^(n)/(2*n+1));
CROSSREFS
Sequence in context: A167577 A129077 A152582 * A012478 A239461 A330966
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Jun 16 2011
STATUS
approved