login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A191008
a(n) = (n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4.
4
1, 5, 22, 86, 319, 1139, 3964, 13532, 45517, 151313, 498226, 1627538, 5281195, 17039327, 54705208, 174877304, 556916953, 1767605981, 5593383310, 17651846030, 55570626391, 174557144075, 547207226932, 1712229064916, 5348509347109, 16680994498409, 51949382866474
OFFSET
0,2
COMMENTS
Another renewal type of sequence. Let X, X(1), X(2),... denote random variables with pdf P(X = 1) = P(X = 4 ) = 1/4 and P(X = 2) = 1/2. Let N(x) denote the first value of k such that X(1)*X(2)*...*X(k) > x and let H(x)= E(N(x)). The sequence is given by a(n) = 3^(n+1)*H(2^n)/4.
FORMULA
a(n) = (n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4.
From Colin Barker, May 03 2017: (Start)
G.f.: 1 / ((1 + x)*(1 - 3*x)^2).
a(n) = 5*a(n-1) - 3*a(n-2) - 9*a(n-3) for n>2.
(End)
MAPLE
A191008:=n->(n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4: seq(A191008(n), n=0..40); # Wesley Ivan Hurt, May 03 2017
MATHEMATICA
LinearRecurrence[{5, -3, -9}, {1, 5, 22}, 27] (* or *)
CoefficientList[Series[1/((1 + x) (1 - 3 x)^2), {x, 0, 26}], x] (* Michael De Vlieger, May 03 2017 *)
PROG
(PARI) a(n)=(n*3^(n+1)+((5*3^(n+1)+(-1)^(n))/4))/4; \\ Michel Marcus, Oct 16 2014
(PARI) Vec(1 / ((1 + x)*(1 - 3*x)^2) + O(x^30)) \\ Colin Barker, May 03 2017
CROSSREFS
Sequence in context: A296583 A216041 A122058 * A006148 A262293 A086090
KEYWORD
nonn,easy
AUTHOR
Edward Omey, Jun 16 2011
EXTENSIONS
More terms from Michel Marcus, Oct 16 2014
STATUS
approved