login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082471
a(1)=1, a(n) = Sum_{k=1..n-1} Fibonacci(k)*a(k).
1
1, 1, 2, 6, 24, 144, 1296, 18144, 399168, 13970880, 782369280, 70413235200, 10209919104000, 2389121070336000, 903087764587008000, 551786624162661888000, 545165184672709945344000, 871173965106990492659712000, 2251984699801570423525355520000
OFFSET
1,3
LINKS
Thotsaporn Aek Thanatipanonda and Yi Zhang, Sequences: Polynomial, C-finite, Holonomic, ..., arXiv:2004.01370 [math.CO], 2020.
FORMULA
For n >= 2, a(n) = (F(n-1) + 1)*a(n-1); a(n) = (1/2)*Product_{k=1..n-1} (F(k)+1).
G.f.: 1 + x/(G(0)-2*x) where G(k) = 1 + x + x*F(k+1) - x*(F(k+2)+1)/G(k+1); F(k) is the k-th Fibonacci number; (continued fraction). - Sergei N. Gladkovskii, Jul 08 2012
a(n) ~ c * ((1+sqrt(5))/2)^(n*(n-1)/2) / 5^(n/2), where c = 18.0370671229828603013612398720270653807943654417062957419698762672485... - Vaclav Kotesovec, Aug 14 2017
MATHEMATICA
Join[{1}, 1/2 Table[Product[Fibonacci[k] + 1, {k, 1, n}], {n, 1, 20}]] (* Vincenzo Librandi, Aug 14 2017 *)
PROG
(PARI) a(n) = if (n==1, 1, prod(k=1, n-1, fibonacci(k)+1)/2); \\ Michel Marcus, Aug 14 2017
CROSSREFS
Cf. A003266.
Sequence in context: A375808 A258325 A191006 * A275594 A013010 A275955
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 27 2003
EXTENSIONS
More terms from Michel Marcus, Aug 14 2017
STATUS
approved