Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 22 2017 12:55:21
%S 1,1,1,1,2,6,24,144,1464,26808,935184,67404816,10401844896,
%T 3508019017056,2732681228689152,5018025242941566336,
%U 21914759744001662937984,238559201308551667344338304,6565759935393013059564090526464
%N Shifts 3 places left under MNL transform.
%C Shifts three places left under MNL transform, see A274760.
%C The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a> Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%p mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=3, 1, d(n-3)): A275594 := n-> c(n): seq(A275594(n), n=1..19);
%t mnltr[p_] := Module[{g}, g[n_] := g[n] = If [n == 0, 1, Sum[((n-1)!/(n-k)!) *p[k]*g[n-k], {k, 1 n}]]; g]; d = mnltr[c]; c [n_] := If[n <= 3, 1, d[n - 3]]; A275594[n_] := c[n]; Table[A275594[n], {n, 1, 19}] (* _Jean-François Alcover_, Jul 22 2017, translated from Maple *)
%Y Cf. A274760, A007548, A274804, A132039, A275593.
%K nonn,eigen
%O 1,5
%A _Johannes W. Meijer_, Aug 03 2016