%I #13 Jul 22 2017 12:55:21
%S 1,1,1,1,2,6,24,144,1464,26808,935184,67404816,10401844896,
%T 3508019017056,2732681228689152,5018025242941566336,
%U 21914759744001662937984,238559201308551667344338304,6565759935393013059564090526464
%N Shifts 3 places left under MNL transform.
%C Shifts three places left under MNL transform, see A274760.
%C The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a> Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%p mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=3, 1, d(n-3)): A275594 := n-> c(n): seq(A275594(n), n=1..19);
%t mnltr[p_] := Module[{g}, g[n_] := g[n] = If [n == 0, 1, Sum[((n-1)!/(n-k)!) *p[k]*g[n-k], {k, 1 n}]]; g]; d = mnltr[c]; c [n_] := If[n <= 3, 1, d[n - 3]]; A275594[n_] := c[n]; Table[A275594[n], {n, 1, 19}] (* _Jean-François Alcover_, Jul 22 2017, translated from Maple *)
%Y Cf. A274760, A007548, A274804, A132039, A275593.
%K nonn,eigen
%O 1,5
%A _Johannes W. Meijer_, Aug 03 2016