login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132026
Decimal expansion of Product_{k>=0} (1 - 1/(2*10^k)).
28
4, 7, 2, 3, 6, 2, 4, 4, 3, 8, 1, 6, 5, 7, 2, 2, 3, 6, 5, 5, 1, 4, 1, 3, 3, 8, 3, 3, 3, 2, 3, 2, 7, 3, 5, 3, 3, 4, 9, 6, 6, 4, 2, 9, 5, 8, 5, 0, 2, 2, 1, 9, 4, 6, 2, 1, 8, 8, 9, 0, 9, 6, 1, 1, 7, 7, 8, 7, 1, 9, 9, 4, 4, 2, 6, 0, 1, 3, 0, 7, 7, 9, 5, 4, 2, 9, 4, 3, 2, 5, 3, 0, 7, 2, 3, 0, 7, 8, 1, 1, 8, 1, 2
OFFSET
0,1
FORMULA
Equals lim inf_{n->oo} Product_{k=0..floor(log_10(n))} floor(n/10^k)*10^k/n.
Equals lim inf_{n->oo} A067080(n)/n^(1+floor(log_10(n)))*10^(1/2*(1+floor(log_10(n)))*floor(log_10(n))).
Equals lim inf_{n->oo} A067080(n)/n^(1+floor(log_10(n)))*10^A000217(floor(log_10(n))).
Equals lim inf_{n->oo} A067080(n)/A067080(n+1).
Equals 1/2*exp(-Sum_{n>0} 10^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals Product_{n>=1} (1 - 1/A093136(n)). - Amiram Eldar, May 09 2023
EXAMPLE
0.472362443816572236551413383332...
MATHEMATICA
digits = 103; Product[1-1/(2*10^k), {k, 0, Infinity}] // N[#, digits+1]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
RealDigits[QPochhammer[1/2, 1/10], 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
PROG
(PARI) prodinf(k=0, 1 - 1/(2*10^k)) \\ Amiram Eldar, May 09 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Jul 28 2007
STATUS
approved