login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132026 Decimal expansion of Product_{k>=0} (1 - 1/(2*10^k)). 27
4, 7, 2, 3, 6, 2, 4, 4, 3, 8, 1, 6, 5, 7, 2, 2, 3, 6, 5, 5, 1, 4, 1, 3, 3, 8, 3, 3, 3, 2, 3, 2, 7, 3, 5, 3, 3, 4, 9, 6, 6, 4, 2, 9, 5, 8, 5, 0, 2, 2, 1, 9, 4, 6, 2, 1, 8, 8, 9, 0, 9, 6, 1, 1, 7, 7, 8, 7, 1, 9, 9, 4, 4, 2, 6, 0, 1, 3, 0, 7, 7, 9, 5, 4, 2, 9, 4, 3, 2, 5, 3, 0, 7, 2, 3, 0, 7, 8, 1, 1, 8, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..102.

FORMULA

lim inf Product_{k=0..floor(log_10(n))} floor(n/10^k)*10^k/n for n-->oo.

lim inf A067080(n)/n^(1+floor(log_10(n)))*10^(1/2*(1+floor(log_10(n)))*floor(log_10(n))) for n-->oo.

lim inf A067080(n)/n^(1+floor(log_10(n)))*10^A000217(floor(log_10(n))) for n-->oo.

lim inf A067080(n)/A067080(n+1) = 0.472362443816572236551413383332... for n-->oo.

1/2*exp(-Sum_{n>0} 10^(-n)*Sum_{k|n} 1/(k*2^k))).

EXAMPLE

0.472362443816572236551413383332...

MATHEMATICA

digits = 103; Product[1-1/(2*10^k), {k, 0, Infinity}] // N[#, digits+1]& // RealDigits[#, 10, digits]& // First (* Jean-Fran├žois Alcover, Feb 18 2014 *)

RealDigits[QPochhammer[1/2, 1/10], 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)

CROSSREFS

Cf. A000217, A067080, A098844, A132019.

Sequence in context: A133390 A201403 A011351 * A198506 A130882 A164106

Adjacent sequences:  A132023 A132024 A132025 * A132027 A132028 A132029

KEYWORD

nonn,cons

AUTHOR

Hieronymus Fischer, Jul 28 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 23:15 EDT 2017. Contains 288633 sequences.