The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A132019 Decimal expansion of Product_{k>=0} 1-1/(2*3^k). 26
 3, 8, 2, 6, 6, 3, 1, 9, 6, 6, 7, 9, 0, 3, 3, 0, 2, 3, 2, 8, 8, 9, 5, 5, 0, 3, 3, 5, 3, 3, 1, 9, 1, 3, 2, 2, 7, 9, 5, 3, 7, 7, 1, 9, 7, 3, 1, 2, 7, 6, 7, 1, 1, 8, 0, 5, 5, 1, 4, 9, 5, 3, 5, 4, 6, 7, 8, 6, 8, 7, 5, 2, 4, 4, 0, 8, 2, 7, 5, 9, 9, 2, 7, 0, 3, 5, 3, 6, 4, 7, 1, 8, 8, 7, 4, 2, 5, 1, 6, 5, 6, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Table of n, a(n) for n=0..102. FORMULA Equals lim inf_{n->oo} Product_{k=0..floor(log_3(n))} floor(n/3^k)*3^k/n. Equals lim inf_{n->oo} A132027(n)/n^(1+floor(log_3(n)))*3^(1/2*(1+floor(log_3(n)))*floor(log_3(n))). Equals lim inf_{n->oo} A132027(n)/n^(1+floor(log_3(n)))*3^A000217(floor(log_3(n))). Equals (1/2)*exp(-Sum_{n>0} 3^(-n)*Sum_{k|n} 1/(k*2^k)). Equals lim inf_{n->oo} A132027(n)/A132027(n+1). Equals Product_{n>=1} (1 - 1/A025192(n)). - Amiram Eldar, May 08 2023 EXAMPLE 0.3826631966790330232889550... MATHEMATICA digits = 103; NProduct[1-1/(2*3^k), {k, 0, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *) RealDigits[QPochhammer[1/2, 1/3], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *) CROSSREFS Cf. A098844, A067080, A132026, A132027, A000217, A025192. Sequence in context: A010627 A103712 A327951 * A182168 A086178 A016669 Adjacent sequences: A132016 A132017 A132018 * A132020 A132021 A132022 KEYWORD nonn,cons AUTHOR Hieronymus Fischer, Aug 13 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 10 19:34 EDT 2023. Contains 363207 sequences. (Running on oeis4.)