login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of phi(exp(-2*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.
28

%I #26 Dec 17 2023 08:57:11

%S 9,9,8,1,2,9,0,6,9,9,2,5,9,5,8,5,1,3,2,7,9,9,6,2,3,2,2,2,4,5,2,7,3,8,

%T 7,8,1,3,0,7,3,8,4,3,5,3,6,5,8,1,6,4,6,1,7,5,4,0,7,8,1,4,0,2,8,2,9,9,

%U 8,5,8,0,4,6,6,0,1,9,2,8,0,7,3,5,7,1,8,2,4,4,7,3,8,7,7,7,3,7,9,3,7,7,1,9

%N Decimal expansion of phi(exp(-2*Pi)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

%H Istvan Mezo, <a href="http://arxiv.org/pdf/1106.2703.pdf">Several special values of Jacobi theta functions</a> arXiv:1106.2703v3 [math.CA] 24 Sep 2013

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/InfiniteProduct.html">Infinite Product</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/q-PochhammerSymbol.html">q-Pochhammer Symbol</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler_function">Euler function</a>

%F phi(q) = QPochhammer(q,q) = (q;q)_infinity.

%F phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.

%F phi(exp(-2*Pi)) = exp(Pi/12)*Gamma(1/4)/(2*Pi^(3/4)).

%e 0.99812906992595851327996232224527387813073843536581646175407814028299858...

%t phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-2Pi]], 10, 104] // First

%Y Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259147 phi(exp(-Pi/2)), A259148 phi(exp(-Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

%Y Cf. A292821, A292825, A292829.

%K nonn,cons,easy

%O 0,1

%A _Jean-François Alcover_, Jun 19 2015