login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363178
Decimal expansion of Product_{k>=1} (1 - exp(-13*Pi*k)).
14
9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 1, 6, 7, 2, 3, 2, 3, 9, 4, 3, 2, 8, 4, 2, 2, 4, 2, 8, 1, 7, 7, 0, 0, 1, 1, 3, 8, 5, 4, 7, 3, 8, 9, 8, 9, 0, 7, 3, 2, 2, 1, 9, 5, 5, 3, 9, 6, 6, 6, 7, 7, 7, 1, 1, 6, 0, 8, 7, 8, 9, 3, 0, 1, 3, 7, 1, 5, 1, 9, 2, 9, 8, 4, 6, 8, 4, 9, 8, 8, 2, 6, 3, 1, 6, 0, 9, 2, 4
OFFSET
0,1
FORMULA
Equals phi(exp(-26*Pi))^(5/2) / (phi(exp(-52*Pi)) * theta_3(0, exp(-13*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(13*Pi/24) * Gamma(1/4) * ((-(11 - 6*sqrt(3))^(1/6) + (11 + 6*sqrt(3))^(1/6)) / ((11 - 6*sqrt(3))^(1/6) * (1 + 2*sqrt(3)) + (-1 + 2*sqrt(3)) * (11 + 6*sqrt(3))^(1/6)))^(1/4) * (-5 - (-91 + 39*sqrt(3) - 18*sqrt(13) + 15*sqrt(39))^(1/3) + (91 + 39*sqrt(3) + 18*sqrt(13) + 15*sqrt(39))^(1/3))^(3/4) * (sqrt(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3))) / (Pi^(3/4) * 3 * 2^(11/8) * sqrt(13) * ((1/2985984)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^12 - sqrt(-1 + (1/8916100448256)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^24))^(1/8))).
EXAMPLE
0.99999999999999999816723239432842242817700113854738989073221955396667771...
MATHEMATICA
RealDigits[QPochhammer[E^(-13*Pi)], 10, 120][[1]]
RealDigits[QPochhammer[E^(-26*Pi)]^(5/2) / QPochhammer[E^(-52*Pi)] / EllipticTheta[3, 0, Exp[-13*Pi]]^(1/2), 10, 120][[1]]
RealDigits[E^(13*Pi/24) * Gamma[1/4] * ((-(11 - 6*Sqrt[3])^(1/6) + (11 + 6*Sqrt[3])^(1/6)) / ((11 - 6*Sqrt[3])^(1/6) * (1 + 2*Sqrt[3]) + (-1 + 2*Sqrt[3]) * (11 + 6*Sqrt[3])^(1/6)))^(1/4) * (-5 - (-91 + 39*Sqrt[3] - 18*Sqrt[13] + 15*Sqrt[39])^(1/3) + (91 + 39*Sqrt[3] + 18*Sqrt[13] + 15*Sqrt[39])^(1/3))^(3/4) * (Sqrt[Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)]] / (Pi^(3/4) * 3 * 2^(11/8) * Sqrt[13] * ((1/2985984)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^12 - Sqrt[-1 + (1/8916100448256)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^24])^(1/8))), 10, 120][[1]]
RealDigits[E^(13*Pi/24) * Gamma[1/4] / (Pi^(3/4) * 2^(7/8) * Sqrt[13*Root[1 + 22*#1 + 224*#1^2 + 1366*#1^3 + 5456*#1^4 + 14758*#1^5 + 27158*#1^6 + 33094*#1^7 + 23936*#1^8 + 8854*#1^9 + 7952*#1^10 - 22058*#1^11 + #1^12 & , 1]]), 10, 120][[1]]
CROSSREFS
Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).
Sequence in context: A363019 A363081 A363020 * A363119 A363179 A292864
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 19 2023
STATUS
approved