OFFSET
0,1
LINKS
Mathematics Stack Exchange, Additional values of Dedekind's eta function in radical form.
Wikipedia, Theta function.
FORMULA
Equals phi(exp(-26*Pi))^(5/2) / (phi(exp(-52*Pi)) * theta_3(0, exp(-13*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(13*Pi/24) * Gamma(1/4) * ((-(11 - 6*sqrt(3))^(1/6) + (11 + 6*sqrt(3))^(1/6)) / ((11 - 6*sqrt(3))^(1/6) * (1 + 2*sqrt(3)) + (-1 + 2*sqrt(3)) * (11 + 6*sqrt(3))^(1/6)))^(1/4) * (-5 - (-91 + 39*sqrt(3) - 18*sqrt(13) + 15*sqrt(39))^(1/3) + (91 + 39*sqrt(3) + 18*sqrt(13) + 15*sqrt(39))^(1/3))^(3/4) * (sqrt(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3))) / (Pi^(3/4) * 3 * 2^(11/8) * sqrt(13) * ((1/2985984)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^12 - sqrt(-1 + (1/8916100448256)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^24))^(1/8))).
EXAMPLE
0.99999999999999999816723239432842242817700113854738989073221955396667771...
MATHEMATICA
RealDigits[QPochhammer[E^(-13*Pi)], 10, 120][[1]]
RealDigits[QPochhammer[E^(-26*Pi)]^(5/2) / QPochhammer[E^(-52*Pi)] / EllipticTheta[3, 0, Exp[-13*Pi]]^(1/2), 10, 120][[1]]
RealDigits[E^(13*Pi/24) * Gamma[1/4] * ((-(11 - 6*Sqrt[3])^(1/6) + (11 + 6*Sqrt[3])^(1/6)) / ((11 - 6*Sqrt[3])^(1/6) * (1 + 2*Sqrt[3]) + (-1 + 2*Sqrt[3]) * (11 + 6*Sqrt[3])^(1/6)))^(1/4) * (-5 - (-91 + 39*Sqrt[3] - 18*Sqrt[13] + 15*Sqrt[39])^(1/3) + (91 + 39*Sqrt[3] + 18*Sqrt[13] + 15*Sqrt[39])^(1/3))^(3/4) * (Sqrt[Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)]] / (Pi^(3/4) * 3 * 2^(11/8) * Sqrt[13] * ((1/2985984)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^12 - Sqrt[-1 + (1/8916100448256)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^24])^(1/8))), 10, 120][[1]]
RealDigits[E^(13*Pi/24) * Gamma[1/4] / (Pi^(3/4) * 2^(7/8) * Sqrt[13*Root[1 + 22*#1 + 224*#1^2 + 1366*#1^3 + 5456*#1^4 + 14758*#1^5 + 27158*#1^6 + 33094*#1^7 + 23936*#1^8 + 8854*#1^9 + 7952*#1^10 - 22058*#1^11 + #1^12 & , 1]]), 10, 120][[1]]
CROSSREFS
Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 19 2023
STATUS
approved