login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129411
Greedy Egyptian expansion of L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
15
2, 3, 20, 1449, 2879423, 31625640285294, 1162849840832612010600369938, 4013794377413687199924671384130798842309412001723286013, 32025095658857878502181254937184611855940944199483548417530154807379258429933254996925647878294253643673560013
OFFSET
1,1
COMMENTS
Contributed to OEIS on Apr 15 2007 --- the 300th anniversary of the birth of Leonhard Euler.
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = sum_{k >=1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = 1/2 + 1/3 + 1/20 + 1/1449 + 1/2879423 + ...
MATHEMATICA
nmax = 12; prec = 2000 (* Adjust the precision depending on nmax. *); c = N[ 4 Pi^3/(81 Sqrt[3]), prec]; First@Transpose@NestList[{Ceiling[1/(#[[2]] - 1/#[[1]])], #[[2]] - 1/#[[1]]}&, {Ceiling[1/c], c}, nmax - 1]
KEYWORD
nonn,easy
AUTHOR
Stuart Clary, Apr 15 2007
STATUS
approved