login
A129406
Expansion of L(3, chi3) in base 3, where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
15
2, 1, 2, 2, 1, 2, 1, 1, 0, 0, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 1, 0, 2, 2, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 0, 0, 2, 2, 0, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 2, 0, 0, 2, 2, 1, 0, 2, 0, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 0, 2, 2, 0, 2, 1, 1
OFFSET
0,1
COMMENTS
Contributed to OEIS on Apr 15 2007 -- the 300th anniversary of the birth of Leonhard Euler.
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = sum_{k >= 1} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = (0.2122121100201111101022022020002102211...)_3
MATHEMATICA
nmax = 1000; First[ RealDigits[4 Pi^3/(81 Sqrt[3]) - (1/2) * 3^(-nmax), 3, nmax] ]
KEYWORD
nonn,base,cons,easy
AUTHOR
Stuart Clary, Apr 15 2007
EXTENSIONS
Offset corrected by R. J. Mathar, Feb 05 2009
STATUS
approved