login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129659
Denominators of the convergents of the continued fraction for L(3, chi3), where L(s, chi3) is the Dirichlet L-function for the non-principal character modulo 3.
15
1, 0, 1, 1, 8, 9, 17, 26, 43, 69, 388, 457, 845, 8062, 33093, 438271, 1786177, 2224448, 6235073, 170571419, 176806492, 5121153195, 5297959687, 15717072569, 36732104825, 125913387044, 288558878913, 2145825539435, 2434384418348
OFFSET
-2,5
REFERENCES
Leonhard Euler, "Introductio in Analysin Infinitorum", First Part, Articles 176 and 292
FORMULA
chi3(k) = Kronecker(-3, k); chi3(k) is 0, 1, -1 when k reduced modulo 3 is 0, 1, 2, respectively; chi3 is A049347 shifted.
Series: L(3, chi3) = Sum_{k=1..infinity} chi3(k) k^{-3} = 1 - 1/2^3 + 1/4^3 - 1/5^3 + 1/7^3 - 1/8^3 + 1/10^3 - 1/11^3 + ...
Closed form: L(3, chi3) = 4 Pi^3/(81 sqrt(3)).
EXAMPLE
L(3, chi3) = 0.8840238117500798567430579168710118077... = [0; 1, 7, 1, 1, 1, 1, 1, 5, 1, 1, 9, 4, 13, 4, ...], the convergents of which are 0/1, 1/0, [0/1], 1/1, 7/8, 8/9, 15/17, 23/26, 38/43, 61/69, 343/388, 404/457, 747/845, 7127/8062, 29255/33093, 387442/438271, 1579023/1786177, ..., with brackets marking index 0. Those prior to index 0 are for initializing the recurrence.
MATHEMATICA
nmax = 100; cfrac = ContinuedFraction[4 Pi^3/(81 Sqrt[3]), nmax + 1]; Join[ {1, 0}, Denominator[ Table[ FromContinuedFraction[ Take[cfrac, j] ], {j, 1, nmax + 1} ] ] ]
KEYWORD
nonn,frac,easy
AUTHOR
Stuart Clary, Apr 30 2007
STATUS
approved