OFFSET
1,2
COMMENTS
For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
Graeme L. Cohen, On an Integer's Infinitary Divisors, Mathematics of Computation, Vol. 54, No. 189, (1990), pp. 395-411.
Eric Weisstein's World of Mathematics, Infinitary Divisor.
EXAMPLE
The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.
MATHEMATICA
ExponentList[n_Integer, factors_List]:={#, IntegerExponent[n, # ]}&/@factors; InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g]==g][ #, Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #, factors]&/@d]], _?(And@@#&), {1}]] ]] ] Null; properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k; InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k]<k, True, False]; Select[Range[100], InfinitaryDeficientNumberQ[ # ] &] (* end of program *)
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* Amiram Eldar, Jun 09 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ant King, Apr 29 2007
STATUS
approved