login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.
8

%I #16 Jun 09 2019 18:43:23

%S 1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,26,27,

%T 28,29,31,32,33,34,35,36,37,38,39,41,43,44,45,46,47,48,49,50,51,52,53,

%U 55,57,58,59,61,62,63,64,65,67,68,69,71,73,74,75,76,77,79,80,81,82,83,84

%N Infinitary deficient numbers: integers for which A126168(n) < n, or equivalently for which A049417(n) < 2n.

%C For large n, the distribution of a(n) is approximately linear and asymptotically satisfies a(n)~1.144n. It follows that the density of the infinitary deficient numbers is 1/1.144, which is about 0.874.

%H Amiram Eldar, <a href="/A129657/b129657.txt">Table of n, a(n) for n = 1..10000</a>

%H Graeme L. Cohen, <a href="http://dx.doi.org/10.1090/S0025-5718-1990-0993927-5">On an Integer's Infinitary Divisors</a>, Mathematics of Computation, Vol. 54, No. 189, (1990), pp. 395-411.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/InfinitaryDivisor.html">Infinitary Divisor</a>.

%e The sixth integer that exceeds its proper infinitary divisor sum is 7. Hence a(6)=7.

%t ExponentList[n_Integer,factors_List]:={#,IntegerExponent[n,# ]}&/@factors;InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f,g}, BitOr[f,g]==g][ #,Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #,factors]&/@d]],_?(And@@#&),{1}]] ]] ] Null;properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k;InfinitaryDeficientNumberQ[k_]:=If[properinfinitarydivisorsum[k]<k,True,False];Select[Range[100],InfinitaryDeficientNumberQ[ # ] &] (* end of program *)

%t fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[100], isigma[#] < 2 # &] (* _Amiram Eldar_, Jun 09 2019 *)

%Y Cf. A126168, A049417, A127666, A129656, A007357.

%K easy,nonn

%O 1,2

%A _Ant King_, Apr 29 2007